

02501 1/1 0

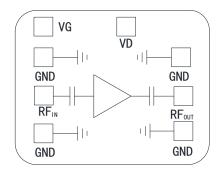
特点:

● 频率范围: 24~40GHz

● 增益: 25dB@20mA; 22dB@12mA

● 噪声系数: 2.6dB@20mA

2.2dB@12mA


● 1dB 压缩点输出功率: 9dBm@20mA

7dBm@12mA

● 单电源工作: +5V@20mA; VG 悬空

+5V@12mA; VG 接地

● 芯片尺寸: 1.5mm×1.0mm×0.1mm

产品简介:

YDC1174 是一款采用 GaAs pHEMT 工艺设计制造的低噪声放大器芯片。该芯片采用了片上金属化通孔工艺保证良好接地。芯片背面进行了金属化处理,适用于导电胶粘接或共晶烧结工艺。

功能框图:

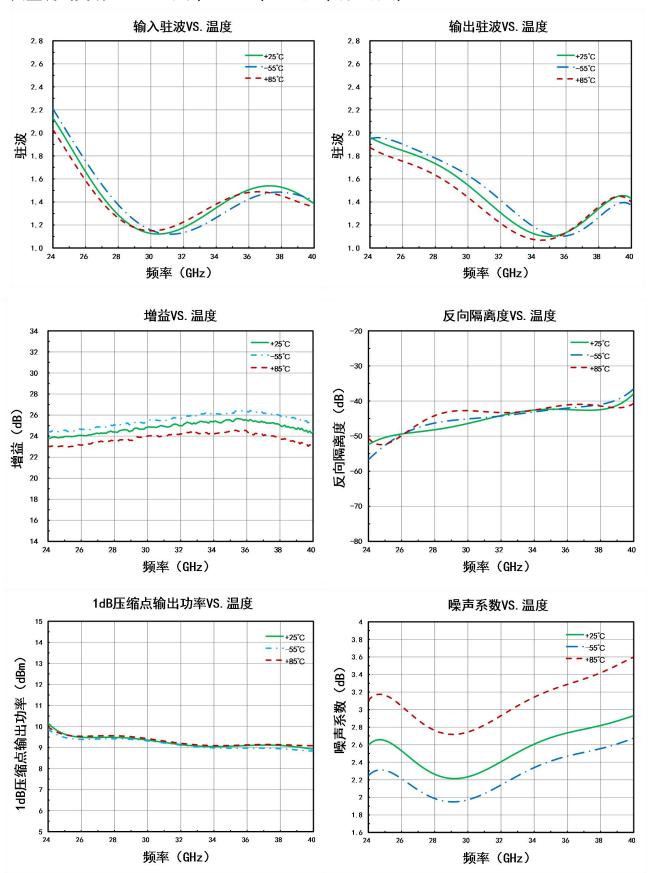
性能参数 1: (50Ω系统, T_A=+25℃, VG 悬空, 探针测试)

参数名称	符号	测试条件	参数值			单位	备注
			MIN	TYP	MAX	平 位	金 社
频率范围	f		24	-	40	GHz	-
增益	G		23	25	26	dB	-
增益平坦度	ΔG	$V_D = +5.0V$	-	±1.0	±1.5	dB	-
输入驻波比	VSWR _I	f=24.0~40.0GHz	-	1.4	2.2	-	-
输出驻波比	VSWRo	P _{IN} =-30dBm	-	1.4	2.0	-	-
噪声系数	NF		-	2.6	3	dB	-
反向隔离度	I_R		34	45	-	dB	-
1dB 压缩点输出功率	OP _{1dB}	V _D =+5.0V, f=24.0~40.0GHz	+8.5	+9	-	dBm	-
输出三阶截点	OIP ₃	双音信号间隔 1MHz, 单音输出功率-5dBm	+19	+23	-	dBm	-
电源电压	V_{D}	-	+4.75	+5.0	+5.25	V	功能正常
工作电流	I_D	V _D =+5.0V, P _{IN} =-30dBm	-	20	30	mA	静态电流

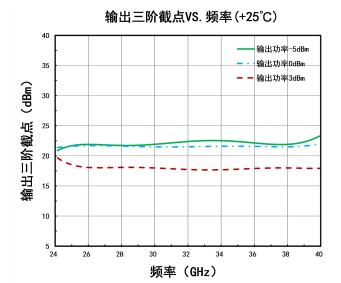
^{*:} 芯片均经过在片 100% 直流与 RF 测试。

性能参数 2: (50Ω系统, T_A=+25℃, VG 接地, 探针测试)

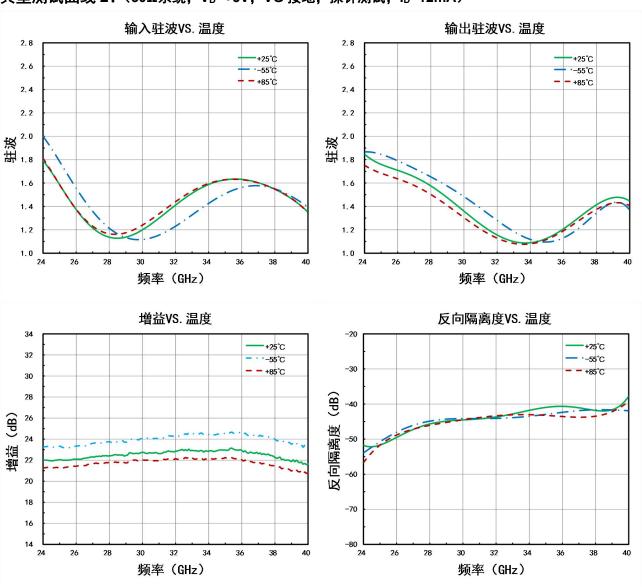
参数名称	符号	测试条件	参数值			单位	备注
			MIN	TYP	MAX	半江	一角往
频率范围	f		24	1	40	GHz	-
增益	G		20	22	23	dB	-
增益平坦度	ΔG	$V_D=+5.0V$	-	± 1.0	±1.5	dB	-
输入驻波比	VSWR _I	f=24.0~40.0GHz	-	1.4	2.0	-	-
输出驻波比	VSWRo	P _{IN} =-30dBm	-	1.4	2.0	-	-
噪声系数	NF		-	2.2	2.6	dB	-
反向隔离度	I_R		35	45	-	dB	-
1dB 压缩点输出功率	OP_{1dB}	V _D =+5.0V, f=24.0~40.0GHz	+5.5	+7	-	dBm	-
输出三阶截点	OIP ₃	双音信号间隔 1MHz, 单音输出功率-5dBm	+15	+18	-	dBm	-
电源电压	V_{D}	-	+4.75	+5.0	+5.25	V	功能正常
工作电流	I_D	V _D =+5.0V, P _{IN} =-30dBm	-	12	22	mA	静态电流

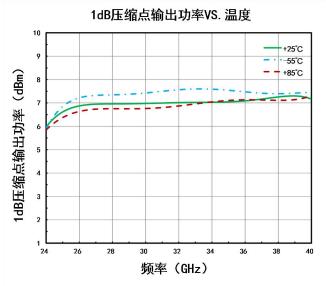

^{*:} 芯片均经过在片 100%直流与 RF 测试。

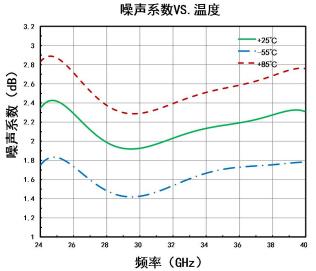
地址:成都市高新西区西区大道 531号 电话: 028-62100309 传真: 028-62105660

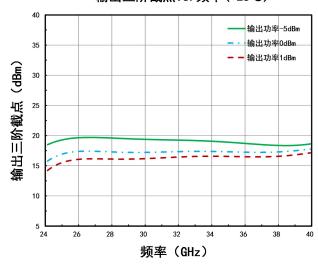

V HH 0 / 1

典型测试曲线 1: (50Ω系统, VD=+5V, VG 悬空, 探针测试, ID=20mA)

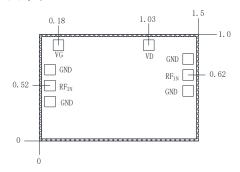





典型测试曲线 2: (50Ω系统, V_D=+5V, VG 接地, 探针测试, I_D=12mA)



202501-V1.0



输出三阶截点VS. 频率(+25℃)

外形尺寸图:

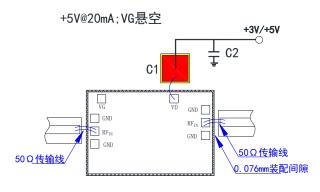
注: 1.单位: mm;

- 2.芯片背面镀金,背面接地;
- 3. 键合压点镀金,压点尺寸: 0.1×0.1mm;
- 4.外形尺寸公差: ±0.05mm。

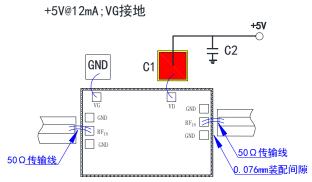
引脚定义:

符号	描述		
RF _{IN}	射频输入,芯片内部有隔直		
RF _{OUT}	射频输出,芯片内部有隔直		
VD	电源端口,+5V 供电		
VG	电流调节焊盘		
GND/芯片背面	接地,芯片底部需接地良好		

极限参数表:


WK2XX:					
参数名称	极限值				
输入射频功率.50Ω	+20dBm				
电源电压	+8V				
装配温度	+300°C, 20s				
工作温度	-55°C∼+85°C				
贮存温度	-55°C∼+150°C				

超过以上任何一项极限参数,可能造成器件永久损坏。


202501-V1.0

推荐装配图:

推荐应用电路器件值:

位号	推荐值/推荐型号	备注
C1	100pF	
C2	10nF	

注:射频端口应尽量靠近微带线以缩短键合金丝尺寸,典型的装配间隙是 0.076~0.152mm,使用 Φ 25um 双金丝键合,建议金丝长度 250~400um。

产品使用注意事项:

- 1. 本芯片产品需要在干燥、氮气环境中存储,在超净环境装配使用。
- 2. 裸芯片使用的砷化镓材料较脆,芯片表面容易受损,不能用干或湿化学方法清洁芯片表面,使用时须小心。
- 3. 芯片粘结装配时,需考虑热膨胀应力对芯片的影响,芯片建议烧结或粘结在热膨胀系数相近的载体上,如可伐、钨铜或钼铜垫片上,避免热膨胀应力匹配不当导致芯片开裂。
- 4. 芯片使用导电胶或合金烧结(合金温度不能超过300℃,时间不能超过20秒),使之充分接地。
- 5. 芯片射频端口使用 25um 双金丝键合,建议金丝长度 $0.25\sim0.40$ mm($10\sim16$ mils)。
- 6. 在存储和使用过程中注意防静电,烧结、键合台接地良好。